
SE(j--, CLASIV4AION4 Or Y...g PAGE~ *I%*-. Does 1n.101pd)

W"4IRUCTIONS
REPORT DOCUMENTATIO PAL'. BFR CPE!GFR

SIEP0m1 NUMSIR 2. GO.T ACCESSION NO 1. RECIPIENT S CATALOG HNMER7

4 TILE 2 fodSb#)S- TYPE OF REPORT & PERIOD COVERED

Computational structure of the N-body Problem AI Memo

A. PERFORMING ORG. REPORT NUMOER

7. AUT.SORfe) 11. CONTRACT Oft GRANT HUMUIEAMo

,Jacob Katzenelson N001'.--08

9 PERFORMING ORGANIZATION NAME A40 ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMIIERS

545 Technology Square
Cambridge, MA 02139

I- CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OAT9CD Advanced Research Projects Agency April 1988
01 1400 Wilson Blvd. IS. NUMBIR OF PAGES

Arlington, VA 22209 ____________V___

14 I MONITORING AGENCY N4AME A AOORESS(II dhifeent Orson Conrolln Office) it. SECU ITY CLASS. tot #his report)

Office of Naval Research UCASFE
Information Systems UCASFE

0 Arlington, VA 22217 IS& OCLASIFICATIO OWNGRADING
SCHIEDuLK

IS. OISTRIOUTION STATEMENT (of title Rsperej

Distribution is unlimited.

17. OISTRINUTION STATELMEN0T (*I if. oheeehlenjored Un 11c SO, 01ldhorne U,,.,a~es JF

16. SUPPLEMENTARY NOTES

None "f

ISI. KEY WORDS (Cenelnwe en rowore. .tde It neeeeemy mod Ideftify by 68ech nobe) Ile

IN-body problem,' particle simulation ,',,tree algorithm~s-for particle

simulation,...parallel computing .I

20. AUSTRACT (Ceno-feool an reverse 0414 It oeoom and identify by blck nbor

DD~ 1473 EDITION OF I NOV IS IS OSOLEtTit UNC LASS IFIED
SECURITY CLASSIFICATION OF THIS PACE (When Dof, knform 4.

16.

'N-

-This work considers tree algorithms for the N-b Ddy problem where
the number of particles is on the order of a million The main concern
of this work is the organization and performance of these computations
on parallel computers.

The work introduces a formulation of the N-body problem as a
set of recursive equations based on a few elementary functions. It is
shown that both the algorithm of Barnes-Hut and that of Greengard-
Rokhlin satisfy these equations using different elementary functions.
The recursive formulation leads directly to a computational structure
in the form of a pyramid-like graph, where each vertex is a process,
and each arc a communication link.

The pyramid is mapped to three different processor configurations:
(1) A pyramid of processors corresponding to the processes pyramid
graph; (2) An hypercube of processors, e.g., a connection-machine like
architecture. (3) A rather small array, e.g., 2 x 2 x 2, of processors
faster then the ones consider in (1) and (2) above.

The main conclusion is that simulations of this size can be per-
formed on any of the three architectures in reasonable time. 20 sec-
onds per time step is the estimate for a million equally distributed
particles using the Greengard-Rokhlin algorithm on the CM-2 connec-
tion machine. The smaller array of processors is quite competitive in
performance. "

Acesioni For
NTIS CR-

,TIC T B 0

- A-:

OlIC

,~~~1 O.,N.P '..',

'~'d

4MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

AI Menio 1042 April 1988 i

Computational Structure of the

N-body Problem

Jacob Katzenelson i -.

Abstract 0
This work considers tree algorithms for the N-body problem where

the number of particles is on the order of a million. The main concern" $
of this work is the organization and performance of these computations ,.
on parallel computers.

The work introduces a formulation of the N-body problem as a
set of recursive equations based on a few elementary functions. It is•
shown that both the algorithm of Barnes-Hut and that of Greengard- ,
Rokhlin satisfy these equations using different edementary functions.

The recursive formulation leads directly to 6. computational structure-.
in the form of a pyramnid-like graph, where each vertex is a process,

i and each arc a communication kukk,

The pyramid is mapped to three different processor configurations: J

(1) A pyramid of processors corresponding to the processes pyramid
graph; (2) An hypercube of processors, e.g., a connection-machine like '

architecture. (3) A rather small array, e.g., 2 x 2 x 2, of processors,,'
faster then the ones consider in (1) and (2) above. ,,

The main conclusion is that simulations of this size can be per-
formed on anuy of the three architectures in reasonable time. 24 sec-
onds per time step is the estimate for a million equally distributed"

nection machine. The smaller array of processors is quite competitive
in performace.

Keywords: N-body problem, particle simulation, tree algorithms
for particle simulation, parallel computing.

This report describes research done at the Artificial Intelligence ,,
Laboratory of the Massachusetts Institute of Technology. Support for"".
the Laboratory's artificial intelligence research is provided in part by
the Advanced Research Projects agency of the Department of Defense .-'
under Office of Naval Research contract N00014-86-K-0180.il %

'On sabbatical leave front the Department of Electrical Engineering, Technion - Israel
Institute of Technology.

Ol-

Computational Structure of the N-body
Problem

Jacob Katzenelson*
Artificial Intelligence Laboratory

and
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

June 6, 1988

Contents

1]Introduction 3

2 A Recursive Formulation of the N-body Problem 5

3 The Barnes-Hut and the Greengard-Rokhlin Methods 7

4 The Computational Structure 12

5 Communication Time 17

6 Computation Time 20
6.1 GR Algorithm in 2D........................... 20

6.1 .1 20
6.1.2 Translate 20

*On sabbatical leave from the Department of Electrical Engineering, Technion - Israel

Institute of Technology.

' -.d~

6.1.3 Convert 2 1
6.1.4 Shift . 22

6.2 OR Algorithm in 3D. 22
6.2.1 ' 2
6.2.2 Translate .. . 23
6.2.3 Convert . 24
6.2.4 Shift3 . 25
6.2.5 Evaluation. 26

6.3 BH Algorithm in 3D 27
6.3.1 $0....................27
6.3.2 Translate . 27
6.3.3 Evaluation. 27

7 A Comparison 29
7.1 The BH Algorithm - Comparative Speed. 29
7.2 The OR Algorithm - Comparative Speed. 31
7.3 Mapping the "pyramid" into a hypercube 35
7.4 A Small Number of Larger Processors. 38 --

8 Near-field Computation 45.-

9 Summary and Conclusions 48

List of Figures

1 The computational box, its parent, children and neighbors;
AaAb, Ac,Ad are children of A; A is a parent of Aa,etc.;The
neighbors of Ad are: Aa,Ab, Ba, Bb,Da,Cc,Ca, and Ac. 6

2 A 2D cell (node) and its connections 14
3 The computation "tree"... 15
4 Computation and Information transfer in tree nodes. 16
5 A 2 x2and a 4 x4pyramid 36
6 A simple 2D embedding. 37
7 A simple 3D embedding. 38
8 Interconnection among neighboring processors. 39

2

1 Introduction

The study of physical systems by particle simulation is called the "many-
body" or the "N-body" problem. Such studies are conducted in celestial
mechanics, plasma physics, fluid mechanics as well as in semiconductor device
simulation [1]. The simulation finds the trajectories of each particle over some
time interval, given the initial position, the initial velocity, the external force
and the nature of the forces that the particles exert on each other.

The number of particles used for such studies is quite large. It is es-
timated that to get insight into three-dimensional turbulent flow about 1
million particles are needed [2]. Thus, such simulations require intensive and
prolonged computations and the question of efficiency is of great interest.

This work considers a family of algorithms for calculating the force or the
potential 4 which can be called "tree algorithms". These algorithms reduce
the asymptotic computational complexity from O(N 2) in the naive approach,
where each particle interacts with each other particle, to O(N log N) in [5]
[6], and down to O(N) in [7] (for particles in two dimensions) and in [9] and
[11] (for particles in three dimensions). The main goal of this work is the
organization and performance of such algorithms on parallel computers. In
particular, it considers how such computers should be organized in order to
handle tree algorithms efficiently when the number of particles is very large,
and how time is divided between computation time and time for communi-
cation between processors.

The work introduces a formulation of the many-body problem as a set of
recursive equations based on a few elementary functions. It is shown that the
algorithms of both [6] and [7] satisfy these equations using different elemen-
tary functions. The recursive formulation leads directly to a computational

structure in the form of a pyramid-like graph, where each vertex is a process,
and to a SIMD computational algorithm.

The pyramid is mapped to three different processor configurations:

" A pyramid of processors corresponding to the processes pyramid graph,
where each vertex is assigned a process and each arc - a communica-
tion "wire".

An hypercube of processors ,i.e., a connection-machine like architecture
[121.

:3
as

"a

pa

* A smaller array of larger processors e.g., 2 x 2 x 2 processors.

Computation and communication time are computed for the first two
cases and estimates are derived for the third case.

The main qualitative conclusion is that large simulations (about 1 M par-

ticle) can be performed on any of the above architectures in reasonable time.
This is particularly interesting with respect to the connection machine - an
existing, ready to be used system - but also noteworthy with respect to the

array of processors which is quite competitive in performance.

4 e

IL

2 A Recursive Formulation of the N-body Problem

We consider N point particles distributed in two or three dimensional space
(2D or 3D). We are interested in the forces that these particles exert on each
other. We use celestial mechanics terminology (point masses and Newtonian
gravitational fields) although the method is equally applicable to electrostat-
ics (electrical charges and electrostatic fields) and fluid mechanics (vortex
particle and vortex field) [1].

The force that a particle at a point x, x E Rf, exerts on a particle y,
y E R3, is given by

G-M. My

where i u - Il x-y 1121(
where 1, is a unit vector in the x - y direction. The forces are additive, i.e.,
the total force on any particle p, F, is the sum of the forces due to all other
particles

= fpq (2)
q~partCdes,q$p

An additional valuable property of these forces is the symmetry, fpq -

-fqp . It is also convenient to express the forces in terms of a potential
function, 0, such that the force on a unit mass at x is

F. = -grad t (3)

The tree algorithm proceeds by dividing the space into "computational
boxes". The method is illustrated by its 2D version which is simpler to
explain; the generalization to 3D is straightforward.

We choose a (2D) rectangle such that all the particles are included in it.
This is called the top rectangle. It is partitioned into four equal rectangles,
called the children of the top rectangle. Top is called the parent of the
children rectangles. Each child is partitioned to four equal rectangles. This D
process continues to an arbitrary level, say h. For compatibility with prior
work [11], the level of top is named the 0 - level, so the bottom level becomes
the h-th level.

The set of neighbors of a computational box 6 comprises all boxes of
the same size whose boundary has at least one point in common with the

Zkw

boundary of b. Thus, in 2D a box has at most eight neighbors; in 3D a box
has 26 neighbors.

A I -"

: ~Figure 1: The computational box, its parent, children and neighbors; Aa,Ab, - ,
_ Ac,Ad are children of A; A is a parent of Aa,etc.;The neighbors of Ad are: "

Aa,Ab, Ba, Bb,Da,Cc,Ca, and Ac.I

It is convenient to partition the force, or the potential, into the far field
and the near field so that 40p = ltp,,nearield + 00pjtarfield. The reasons for this .
partition are twofold: (1) Approximation formulas valid for the far field po- ,
tential are not valid for the near field potential; (2) Considerations related to "
the finite computer word size and to global accuracy necessitate modification i

of the near field at small distances (smoothing [3] [4]). In partitioning to far
and near fields we follow [7,9] by taking the field at computational box due "

] to particles in itself and in its neighbor boxes to be the near-field potential;
! the field in the box due to all boxes which are not neighbors is the far-field

; potential.
Let 0, be the far-field potential function due to particles in the box n.

' For any x, x §t n and x neighbors(n), (,n(x) is the contribution of particles"
in n to the potential at x."
FiLetg be the far-field potential in n; i.e., for any x, x E n, (X) is the

6t

AcAd are cum~m hldren, of A;i is paentlof Aaech neigbor of Ad.are:

contribution of all particles q, q g n, and q q neighbors(n) to the potential
at the point x.

A recursive relation among %Y,, and %Fparent(n,) is the heart of the tree
methods:

TIn = 'pparent(n) + F, '0i (4)tEI,,

Where ,, the set on which the summation of t, is done, is called the
interaction set of n and is defined by

I = {jlj 2 hildren(neighbors(parent(n))),j 0 neighbors(n)} (5)

A solution of 4 is defined by its boundary conditions

Itop = 0, (6)

Cand by

n . ,(7)
iEchildrten(n)

where n is not a bottom level rectangular; for a bottom level n

4= , (8)

where 4Zo is the far-field potential function given in terms of the particles
in n.

3 The Barnes-Hut and the Greengard-Rokhlin Meth-
ods

The Barnes-Hut (BH in the sequel) [6] and the Greengard-Rokhlin (GR) [7,9]
methods both solve the above recursive equations. Their differences are in
how the potential functions are represented and approximated.

For presenting the material in this section it is useful to distinguish be-
tween a function, say, f, its approximation, f and the representation of this
function or its approximation, rep(f) or rep(f). Usually, we want to repre-
sent the function itself, however, for various reasons we carry only enough

7

~~'~~~'~ -Z Z *-** * * "A*~ - Z I

information to define the approximation completely. Thus, by design, rep(f)
represents f.

In the BH method the function 4 is represented by two quantities (m,c)
where m is the sum of the masses of the particles in the box n, and 6 is the
center of mass vector. Thus, ' at a point y, y V neighbors(i) and y V i, is
approximated by $' which is the potential of a mass m at evaluated at the
point y. I.e.

(G 11 y -c FI (9)

Similarly, $n , for level 1, 1 h, approximates O,,. It is calculated by
summing the masses of the children and finding a center of mass of he
masses of the children. The representation of $n,, is

rep(4'n) =, (Z' ~ 2 iEchildren(n) r (1

iEchildren(n) ZiEchildren(n) mi

The approximation to yn, ',,, is derived from 4; in is represented as a list
of pairs; the pairs (mi, c4) of all the members of interactive set are appended
to form a list which, in turn, is appended with a similar list representation

%Pparent(n)-

The actual potential, or the force at a point p, is calculated by evaluating
the appropriate I,,, n at level h, by evaluating each member of the list at p,
and by adding the near-field effect to the result.

The 3D version of the GR method is described in [9 and in [111. The
much simpler 2D version suffices for showing how the algorithm fits the above
computational structure.

In the sequel we identify R 2 with the complex plane C which simplifies
the notations. Let n be a box on some level. For all -, z n and z 0
neighbors(n), the GR method considers t as its multipole expansion around
the center of n

'n(Z) = ao log(z) + . (11)

For all z, z E n, the GR method considers Tn,, as its local (Taylor) expan-
sion around the center of n,

- -|P,% ---

I=O ".

00

1=0

In both cases the functions are approximated and represented by their
first p + 1 coefficients, where p is chosen according to the accuracy required.

To derive ,, from the 4's of its children, equation 7, the child represen-
tation is "translated", i.e., each child 0, j E children(n) is expanded to a
multipole expansion around the center of n. Once this is done, the 's of all
children are expanded around the same origin and 0,, is found by summing
the coefficients of the translated j.

To derive 1k,, (equation 3) the 0,, i E interactive set of n, are converted
to a local expansion around the center of the box n. *p.,.,t(,) is in this local
form and, therefore, the remaining operation is to translate (shift) the local
expansion from the center of parent(n) to the center of n. Now, all these
functions are represented in n by their local expansions around the same
point, and I,, is obtained by summing up the coefficients of all these local
expansions.

Details of the GR algorithm follow:
Let n be a box of level h (bottom level). Let the center of the box be the

coordinate system; let the box have m point masses {q,, i = 1,..., m) located
at points {z,, i = 1...., m} in the box; let r be the diagonal of the bnx, thus,
Iz1l < r. Then, for any z E C with !zI > r,

00%

4~z= aolog(z) + (13)
k=l Z ' '

where %

-qi (zi) "-
ao= Eq and a.

=I = "k

'bn is approximated by the first p terms of the infinite series. It can be shown
that for any p > 1,

k=1 I I - :0

where

9 p

'3

WA'X AF -A '% 7%A

Clearly, Z, is represented by { ak, k 0 0, ... ,p } and the coordinates of
the center of the n-th box.

To find 4 , i not of level h, one uses equation 4. To sum the ,, j E
children(i), the expansion representing 0i is "translated"; i.e., each tI is
expanded to a multipole expansion around the center of i. Once this is done,
the 's of all children are expanded around the same origin and (,i is found
by summing the coefficients of the translated Ij.

Let the coefficients aj, i = 0, ..., oo, specify the multipole expansion of t,
around the point zo. The translation of this expansion to the origin is given
by

D.(z)= oolog(z) + 00 - (14)

where

+b aoz0 + _ l (15)

with () the binomial coefficients.

%',, is formed by retaining the first p + 1 terms of the above series. It is
represented by { bk, k = 0, ...,p } and the coordinates of the center of the
n-th box.

%P,, (equation 3) is computed by converting the 1j, i E interactive set of n,
to a local expansion around the center of the box n. This conversion is given
by the following:

Let { ak, k = 0, ... } be the representation of some $,, j is not a neighbor of
n. Let n's cer-ter be the origin, and let the center of j be z0 . The contribution
of §j to IQ,, at a point z in n is

00

bz, (16)
l=0

where
* 00

o= aolog(-zo) + E _--,-- (17)
k=1 -Z

10

and = ~ ~ (~-~(8

b o + ak +-(18/

The shifting of Tpar(,,) to the center of n is given by the following
equation: For any zo, z and ak, k = 0,1,-,p,

Eak(z -zk= t(tak(') (-zo)Ak-)z. (19)
k=O i=O k= \)

Several functions can be defined to summarize the GR algorithm:
Let '+' be an operator that maps representations of the same type which

are expansions around the same point z into a representation around z each of
its coefficient is the sum of the appropriate coefficients of the '+"s arguments.

Translate, maps a representation of a multipole expansion to a multipole
expansion around the center of box z (equation 14).

Shift, maps a representation of a local expansion to a local expansion
around the center of box z (equation 19).

Convert, maps a representation of a multipole expansion to a local ex-
pansion around the center of box z (equation 16).

Under these conventions the computation process by which the GR algo-
rithm computes equations 4 and 7 can be written in the following way:

rep(O.) E Translate1 (rep(41)) (20)
irEcildren(n)

rep(t.) = hift(rep(,efq)))+ E Convert,(rep(4;))

. ¢,.,Vbo,'.(R)})

(21)
The operations of the BH algorithm can be described with functions bear-

ing the same names with one minor difference: Translate, has all the repre-
sentations of the children of z as arguments and the summation is omitted.
I.e., equation (20) becomes

rep(On) = Translaten(rep(01),rep(4 2),...,rep(4 j),...) all i, i E children(n)
(22)

11 5.

' . .. " ' """ "' ""' '"'~'~~ K'" ' -"" ' " -"" . 4', ' e.. KX,. f

4 The Computational Structure

This section considers a network of processes, each associated with a region of
space (a cell, a rectangular for 2D, a box for 3D). Each process communicates
with its parents, its children and its neighbors to compute the solution to the
N-body problem according to the above algorithm. If a processor is assigned
to each process and all processors operate in a SIMD style, this architecture
is "connection machine like" (12] in the sense that there are many equal
processors operating in SIMD style which communicate via many connections
to "neighbors". The difference between the connection machine and this
network is that this network is not a hypercube; instead, its connections are
derived from the structure of the equations. Our purpose is to find bounds
on the computation time of this network architecture in order to compare it
with the connection machine and other architectures.

A look at the equations shows us the following communication paths for
each process (cell) C:

a. C to C's parents (equation 8),

b. C's parents to C (equation 4),

c. C to each of its children (equation 4),

d. Each child of C to C (equation 8),

e. C to C's interactive set (equation 4),

f. Each member of C's interactive set to C (equation 4),

h. C to its neighbors (h level only for the calculation of the near-field),

i. Each neighbor of C to C (h level only for the calculation of the near-
field).

If we abstain from sending messages in both direction at the same time
(as long as the SIMD discipline is maintained this does not occur) a and b,
c and d, and h and i can be satisfied by the same "wire". Moreover, the
interactive set is symmetric, i.e. for any box a, b, a E interactive set(b)
implies b E interactive set(a). Therefore, e and f can also be united.

Thus, we need the following connections at each process C:

12

a. C to/from C's parents (8), N

b. C to/from each of its children (4),

c. C to/from C's interactive set (4),

d. C to/from its neighbors (h level only for the calculation of the near- -,

field).

If each connection is implemented, connection machine style, by one wire,
we have 32 wires in 2D (1 parent, 4 children, up to 27 members in interactive
set). In 3D we have 198 wires (1 parent, 8 children, up to 189 members in
interactive set). This number seems high; certainly it cannot be implemented
as one physical wire per connection. However, we can reduce the number of
connections as follows.

The information sent from C to its interactive set members is the same
as that sent to its parents. C's interactive set members can be reached by
having C's parents forward the information to their (26) neighbors, who,in
turn, forward it to their children. Since each message carries its source, the
children can check if the sender, C, is in the child's interaction set and discard
the information on a negative answer.

This argument replaces connection to interactive set members with con-
nections to neighbors. The number of connections per cell becomes 13 for
2D and 35 (1 parent, 8 children, 26 neighbors) for 3D, which, although not
low, is much better. In such an arrangement there are connections to par-
ents, to children and to neighbors for all processors, including those at the h
level. Figure 2 illustrates the connection structure in 2D, the equivalent 3D
structure is somewhat difficult to draw.

Figure 3 shows that the computation structure has the form of a graph
where each node describes a cell and each branch describes a wire connecting
two cells. The graph has a form of a pyramid with the top node corresponding
to the top cell and the bottom nodes to the h level cells. Levels, or cells of
equal size, appear distinctly in the graph; they are nodes of equal height from
the bottom or the top of the pyramid.

Consider an algorithm that performs the far-field computation in the
following steps:

'I-13

P..

~.dI

LavvI I+I -

L4.0h1+1

p.

Figure 2: A 2D cell (node) and its connections

Algorithm:

1. rep(°): Compute rep(°), for all n, n in level h. (The exact represen-
tation and method of computation depends on the method used and
will be elaborated on in the sequel.)

2. Calculate rep(tn) going up the tree: Given rep('O), and using equa-
tions 8 and 20 compute rep(4n) for all n, level by level, starting in level
h - i and ending in level 0.

3. For all nodes of the tree calculate the effect of the interactive set mem-
bers: For all direction d in a level do

(a) Each node n sends to its interactive set member that lies in direc-
tion d from it the rep(4n) for all p, p a child of n;

(b) Each node n receiving such an message plays the role of a neighbor
and retransmits it to all its children;

(c) Each node n (playing the role of a child) computes Convert, (rep(4j))
for all messages received from one of its interactive set members

14

/-/

IL O --j W IV"W%- rK-K

Side View

Figure 3: The computation "tree".

and discards the rest of the messages. The result is accumulated,
awaiting the arrival of rep(Ij) from n's parent.

4. rep(i,,): The values of rep(V,,) are propagated down the tree to corn-
pute rep(,) for all children according to equation 21.

5. Evaluation: For all n in level h, rep(,) is used to calculate the far-field
potential at each mass-point in the cell.

Note that all the h level nodes can perform step 1 simultaneously. Simi-
larly, step 2 is simultaneously performed by all nodes of the same level. Step
3 is simultaneously performed in parallel by all nodes of the entire network.
This holds if we understand that a node without children does not send them
messages, etc.

Some additional consideration of the algorithm shows that our tree con-
sists of three kinds of nodes: the top node, the intermediate nodes, and the
bottom level nodes. Figure 4 illustrates the functions computed and the
information flow in each node.

The above algorithm differs from the algorithms described in [9] and
in [11] in several aspects. First, the algorithm is really a frame in which

15

Figure 4: Computation and Information transfer in tree nodes.

different functions may be substituted for , Translate , etc. The algo-

rithm is described as a "tree" of processes operating in parallel rather than

a single process algorithm as in [9], or the level-by-level parallel algorithm

as in [ll](page 50). More importantly, this algorithm handles the informa-

tion transfer explicitly and so reduces both communication and computation
times. The main tool for accomplishing this is the parallel structure. Infor-
mation is sent in parallel so that messages do not conflict and computing is

done in parallel by all processes of the tree.
The network of processes can operate also in the "data flow" mode where"

each process performs the computation once the data is available. The op-
eration of the network in this mode has not been fully investigated as yet.

00. _

16 . it.

is It

C.-

5 Communication Time

The time required to solve the N-body problem by the above computation
structure consists of the time that each cell spends computing plus the time
required to transfer the information from process to process. The later com- C

ponent is named communication time. The communication time is bounded
under several assumptions.

1. Time is sampled and divided into intervals; during one time-interval a
process can both send one message and receive one message.

2. Messages are of bounded length.

3. The time to send a message is one "message time" unit.

When the messages are small, one can add the assumption that processes
can combine several messages into one message. It turns out that in our
applications sizes are such that this assumption should be be omitted.

It is further assumed that each function representation is transferred by
one message (this assumption will be modified later on). Under the above
assumptions we get the following communication time bound (Notice that
under the SIMD assumptions all processes are doing the same operation at
the same time.)

Consider the algorithm for far-field computation in the previous section.
Let us assume that in 2D there are n x n regions (n x n x n regions for 3D)
with h = flog n]. Denote by nchildren the number of children of a processor
(processor level is not h). Denote by nn the maximum number of neighbors
of a processor. Denote by n,.t the maximum number of members in an
interactive set. The following lists the communication time in message-time
units for each step of the algorithm:

Step 2 Since each processor can send one one message and receive one message
at a time, the time is nchildren x h.

Step 3 Here each processor sends nchildren messages to each neighbor which, in $
turn, sends one copy to each of its children. The time is nn(nc ildre +

17

n2-

nchildren). Note that messages can be sent and received simultane-
ously by all processors without interference provided that each proces-
sor sends its message in the same "direction"; i.e. all processors send
to the left and receive from right, etc.

Step 4 Here each processor sends a message to each of its children. The time
is nchildren x h.

Thus, the total communication time in message time units is:

communication time < 2 h.nchitdre,, + n, x (nchitdren + nchitdren) (23)

In terms of actual time what is "message time"?
The GR algorithm specifies a function by p coefficients and by the coor-

dinates of the center of the box around which the function is expanded (the
source of the message). Since messages are function descriptions, all mes-
sages are of equal length and the concept of message time is well defined as
the time required to send a function description. For example if p = 10 and
each coefficient and the source are represented by 32 bits, the length of the
message is about 352 bits. The connection machine messages, for example,
are 190 bits long; therefore, on that machine, two actual messages are needed
to implement our 352bit message and the "message time" becomes the time
for two connection machine messages.

The case of the BH messages is somewhat more complicated. Fixed size
messages, each consisting of (center of mass, mass, source) travel up the
tree. Therefore, the contribution of steps 2 and 3 of the algorithm is as
above, totaling

h.nchildre, + nn X (nchildren + nchildren). (24)

However, on the way down, the number of such triplets that pass each
node of the tree equals the number of interactive set members of all the
node ancestors. Moreover, this function description is not a message of fixed
length and the estimation of communication time has to be done differently.
* The number of triplets that a node at the bottom of the tree (pyramid)
receives is (less then)

nte x h. (25)

18

If messages are transmitted starting from the bottom of the tree, the above
is the number of messages step 4 requires. It is an upper bound since some
nodes have small interactive sets (e.g, top has zero members). Thus, the total
number of messages in the BH algorithm is:

h x nchidren + nn X (ncAujdl, , + nchldren) + ngt X h. (26)

With k triplets per message, the communication time is the above expression
over k.

The following argument supports the above expression:
Choose an arbitrary node, say A. A sends down the tree the triplets of

its interactive set. As soon as the last triplet clears A's child, the child can
send its own interactive set triplet down the tree. Thus, for a tree of height
h and a bound on the number of members in an interactive set, we get the

above expression as a bound on the communication time.

i

6 Computation Time

This section estimates the computation time resulting from the arithmetic
operation only. It does not include the communication time and it does not
include data transfers inside processors. The estimation is made for both 2D
and 3D using both GR and BH algorithms.

The time to perform floating point addition, multiplication, etc. is de-
noted by t+, t., etc. i+, etc. denotes the corresponding time to perform the
corresponding complex arithmetic. It is assumed that i+ = 2t+, and that
t. = 4t. + 2t+.

6.1 GR Algorithm in 2D

It is assumed that we maintain p + 1 terms in each expansion.

6.1.1 'o

This calculation follows Theorem 2.1.1 in [9]. -
It is assumed that in each cell there are m mass points q, at points zi, i

1...m.

1. The calculation of z , i = 1, .. m, k 1,...,p, requires m(p - 1)i..

2. The calculation of ak requires:

For k = 0 the time is (m - 1)t+; For k # 0 the time is (m- 1)i+ +2mi.;

3. Summing the above and replacing the complex arithmetic entries by
their equivalent floating point arithmetic:

(rn-i)t++2(m-1)pi++rm(3p-1)i.) = (8mp-2p-m-1)t++m(12p-4)t.
(27)

6.1.2 Translate,

This calculation follows Lemma 2.2.1 in [9], equation 15 above. Notice that
at each level there are only four different values for z0 . These differ from
each other by multiplication by j (the complex rotation by 1). As one goes
up a level the corresponding zo is multiplied by 2. Thus, the values of z0,

20

,.~'.~' ~ ~ v\J4~I\%V\ W %

I!

1 = l,...,p can be assumed to be precalculated., and 15 takes the following
format:

= (j + 2 "evlzo)' ' h-(°- .\ (28)

+k=1 k ,

where level denotes the cell level, and m = 0, 1, 2,3.

1. The calculation of b, requires:

For 1 = 0 - no operations required; For 1 #0 the time is 3t. + Ii+.

2. Summing the above and replacing the complex arithmetic entries by
their equivalent floating point arithmetic:

3 3 .+ (p2 +p) = 4(p 2 + p)t+ + 6(p' + 3p)t.. (29) ,
22 a.'

6.1.3 Convert, "

This calculation follows Lemma 2.2.2 in [9], equation 18 above. Notice that
here , as in the above section, at each level there are only se feral different

values for zo; each corresponds to the position of a cell relative to each of its

interactive set members. Here too, as one goes up a level the corresponding
zo is multiplied by 2. Thus, the values of z0, I=1, ... ,p can be assumed to be
precalculated; the number of sets of numbers equals the maximum number
of members in an interactive set. With zo, assumed known constants, and
taking into account the multiplications by powers of 2, we get the following
operation counts:

1. The calculation of b, requires:

For I = 0 - (2 + 2p)!. + pi+. For 19# 0 - (2 + 2p)i. + pi+.

2. Summing the above and replacing the complex arithmetic entries by
their equivalent floating point arithmetic:

(2+4p+p')i.+(p+1)pi+ = 4(2+4p+p ')t. +(2.(2+4p+p2)+(p+l)p)i+
(30)

= (8+16p+4p2)t. + (4 + 9p + 3p')i+ (31)

21

W!

6.1.4 Shifts

This calculation follows Lemma 2.2.3 in [91, equation 19 above. As in the
Translate, case, at each level there are only four different values for z0

differing from each other by multiplication by j (the complex rotation by 1).
As one goes up a level the corresponding zo is multiplied by 2. Thus, again,
the values of z0, 1 = 1,..., p can be assumed to be precalculated..

From 19 follows that

c= ak (-zo)k - 1. (32)
k=1

1. The calculation of cj requires:

3(p - l)i. + (p - i)i+. (33)

2. Summing the above and replacing the complex arithmetic entries by
their equivalent floating point arithmetic:

(P + l)P(3i. + i+) = (P + 1)P(12t. + 8 t+) (34)
2 2

6.2 GR Algorithm in 3D

The following calculations follow the 3D expansion by F. Zhao [11]. Zhao
expands the various functions to a series of the derivatives of - where R is

the distance from the center of a cell (whose function is being computed) to
the point at which the potential is desired. To avoid evaluation of (direc-
tion) cosines, they have been expressed in terms of the cartesian coordinates
(X1 , X2 , X3). In the sequel, p is the order of the highest derivative retained.
The number of terms in the expansion, denoted by nP, is derived from p.

6.2.1 $o

This calculation follows Theorem 3.2.1 in [11].
It is assumed that in each cell there are m mass points q, at points

(x,x 2 ,,x 3 ,), i = 1...m.

aijk= Eqi(-1)I++ XI,4x 3 ' (35)
1=1"

229'

, '.."• " , # -": '. " -' " ,' ,' ."-."s. , ,','': '.,',''.," ,""-''..',,''.''..'.,'.- -" ,''-' -. '--' ,''--'.-'.-'' ''¢ , .Z .' .'a--..

If we retain only terms of i + j+ k <~ p then the number of terms is

n -ephi (p + 1)(p + 2)(p + 3) (36)
k=0 =0 i=0

which results in n1 = 4, n2 = 10, nl3 = 20, n4 = 35, etc.

1. Consider the following recursive relations between the coefficients:

ao,o,o (37)

ajk = a,...1,,k .-~x = a,, ,k .-)j= j~~ ()k (8
2k

2. There are nP, recursive steps each corresponding to a different ai1k.

3. Each recursive step requires 3t. (i is stored as

4. The above is repeated for mn particles and a.ccumulated, giving the
4ri result (m - 1)t+.

5. Summing all up results in the following bound

np(3mt. + (mn - 1)t+) (39)

6.2.2 Translate,

This calculation follows from Lemma 3.2.1 in [11]. The coefficients of the
translated expansion, c4,k, are

i .j k

=ii a.La L(40 ~V-)
0=0 3=0 'Y=O

Here a' k are the coefficients in the expansion for 11R, measured from the 5

old cell center with respect to the new center.

1. The aj are constants that can be precomputed The number of differ-
ent sets of such constants equals the number of children of a cell - 8
in 3D. The constants at different levels can be derived by multiplying
by appropriate powers of 2.

23

Wr- Pr

-~ . .,~'
5 .

'~J..5.*g.4- ~ ~ :',' y r ~ ~'~ 4 d ' ~ ..4 i~ ~ % ~

2. The number of terms in Cijk is (i + 1)(j + 1)(k + 1).

3. Each term is a multiplication of an a',a power of 2 and an aik; therefore
each term requires 2t. + t+. Thus, each cjij requires (i + l)(j + 1)(k +1)(2t. + t+).

4. Summing all up, i + j + k < p, results in

p p-k p-k-E E (i + 1)(j + 1)(k + 1)(2t. + t+) (41)

k=O j--O i=O

7I p dd ,2.++.,
+(p 21p+175p4+735p+1624p+1764p+720)(2t.+t+) =

(42)

The above expression (caculated by F. Zhao using MAXIMA [19])is denoted
by kp. Thus, the time is

kp(2t. + t+). (43)

6.2.3 Convert,

This calculation follows from Lemma 3.2.2 in [Ill. The coefficients of the
converted expansion, cijk,&e

cijk = ia#k a ,b+.j+O,k+-(i +. a)!(j + 0)!(k + -y)! (44)

biik are the coefficienta of the local expansions for 1/R, measured from the
old cell center, with respect to the new center.

1. The bik are constants that can be precomputed. The number of dif-
ferent sets of such constants in the number of interactive set members
of a cell - 189 in 3D. The constants of different levels can be derived
by multiplying by appropriate powers of 2.

2. Each term of cijk requires at most (2t. + t+). (There are three items;
a, a power of 2,and a constant.)

24

N'

3. To calculate the contribution of all terms note that both aijk and bijk
are zero if one of their coefficients is larger then p. Thus, the amount
of time is

p p-k p-k-i p p-*p-a-0

k=Oj=O 0 t-ko=j -v=i

(3P +22p + 57p2 + 62p+ 24)(2t. + t+) = c(2t. + t+) (46)

A crude upper bound can be derived simply in the following way; If the
vanishing of the bik is not accounted for, the estimate for the number of
terms of CjA, is n.; Since the number of cijk's is np, the bound on time is
n'(2t. + t+). The ratio between the bound of equation 46 and this last
bound is about p/np; This illustrate the advantage in the result of equation
46.

6.2.4 Shift,

This calculation follows from Lemma 3.2.3 in [11]. The coefficients of the
converted expansion, dijk,are

00 +\Ii
dijk E ei+,j++,+ ') A Ax . (47)

Here (AXI, Ax2 , AX3) are the coordinates of the old center in terms of the I

new center.

1. The Ax, are constants that can be precomputed. The number of dif-
ferent sets of such constants is the number of children of a cell - 8 in
3D. The constants of different levels can be derived by multiplying by
appropriate powers of 2.

2. Each term of djg, requires at most (3t. + t+) (there are four terms: Cijk,

a power of 2, the combinations and the A's).

25

- w *N ,N .-

3. Summing over all terms and all coefficients results in the following
bound

p p-kp-k-j p p-ap-a-0
1' E E 1: E E (3t. +t+) (48)

k=Oj=O i=O a=k=j -f=i

- - (3p + 22p3 + 5 7P2 + 63p + 24)(3t. + t+) = cp(3t. + t+) (49)
24

6.2.5 Evaluation

The evaluation of the potential at each mass point requires the evalu-
ation of 1Q., n at level h, using equation

p

-x = E dikXl 2 3,
i,j ,k--o

for the potential. The force can be obtained by taking the partial
derivatives; Thus,

P

== djkiXijX Z2 3 -i,j,k=O

The potential can be evaluated with two multiplications and one addi-
tion per term (keep xzxj Xk for each ijk and proceed by increasing the
indices one at a time). For m mass points in z, the evaluation of the
potential requires

mnp(t+ + 2t.). (50)

For m mass points in z, the evaluation of the force requires about

m(np(t+ + 2t.) + 3nt.). (51)

The above was derived by assuming that first the members of the series
were calculated with a power smaller by one for each xi, and, next, for
each component of the force, the series components where multiplied
by the omitted components. (I.e., multiplying by iz 2x 3 for F, and
ignoring the operations for forming iX2X3.)

26

% -%

.

6.3 BH Algorithm in 3D

The 2D BH algorithm is similar to the 3D version ; its detailed opera-
tion count is omitted.

Only the calculation of t, and Translate,, as well as the final evalu-
ation, have significant operation counts; Convert, and Shift, amount
to concatenation of lists.

6.3.1 o

The following time is obtain from equation 10 (in 3D):

(m - 1)t+ + 3mt. + 3(m - 1)t+ + 3t/ = 3mt. + 4(m - 1)t+ + 3t/. (52)

6.3.2 Translate,

Translation is the above calculation with m = 4:

12t. + 12t+ + 3t/. (53)

6.3.3 Evaluation

The evaluation of the potential, or force, at each mass point requires the
evaluation of each member of the list representing %P,, n at level h, us-
ing equation ?? for the potential and equation 1 for the force. IF,, , n at
level h, has at most (h-2)*(maximum number of members in an interactive set)
elements. That maximum is 189 in 3D.

The force between two points (equation 1) is evaluated according to

= M.M i -X (54)
S = iX - 1 1 X -vy II'

and requires (3t. + 2t+ + 3t-) + 15t. + 3t- + 3t/ where the 15 is an
estimate of the time for evaluating a square root. With t- = t+ the
result is: 18t. + 8t+ + 3t/.

27

Thus, for m elements anld h levels, the time is:

189.m.(h - 2)(18t. + 8t+ + 3t/ 1) (55)

28

7 A Comparison

In order to gain insight into the above results this section maps the pyramid
of processes to three different processor configurations:

o A pyramid of processors corresponding to the processes pyramid graph,
where each vertex is assigned a process and each arc a communication
"wire".

o An hypercube of processors ,i.e., a connection-machine like architecture
[12].

o A smaller array of larger processors , e.g., 2 x 2 x 2 processors.

The performance of the BH and the GR algorithms are compared by calcu-
lating their communication and computation times in these configurations
The calculation is done for several typical values of N, the total number of
particles, m number of particles in a cell, p and n. that determine the number
of coefficients that the expansion carries. To get some idea of actual time
in seconds the speed of communication and floating point operations of the
CM2 model connection machine is used.

7.1 The BH Algorithm - Comparative Speed

The section starts by summarizing results from previous sections.
messages: It is assumed that the BH algorithm triplet consists of 4 single

precision 32bit word plus one 32bit word for specifying the origin of the cell.
Thus, the 160 bit message fits into the 190 bit connection machine message;
message-time unit becomes the time for one message on the CM2 connection
machine which is about 0.250 millisecond.

Communication time: In 3D we have 8 children, 26 neighbors, and 189
as the maximum size of an interactive set. Thus, the communication time is
197h + 1872 (equation 26).

Computation time: To simplify the discussion it is assumed t+ = t.;
t/= 5t+. Under these simplifying assumptions the time spent in computing
is:

1. Ono: (7m + I1)t+

29

_1W -

KO W.7 2. N

2. Translate..: 39ht+;

3. Evaluation: 189m(h -2)(41)t+.

Cells and particles: Let the number of cells in the bottom level,h, be
N = n x n x n ; then h= [Pg 2 nj The total number of cells is:

1 + 8

p

Since the number of processors in the connection machine is 64K, we
would like to restrict the number of cells to this number.

The number of particles is iN.
Summary: The following table summarizes communication and compu-

tation times for selected values of n and m. The communication time is in
message-time units and the computation time is in multiples of t+.

n m particles h communication translate, 00 evaluation
message units t+ t+ t+, -

32 1 32K 5 2857 195 18 23247 p
32 10 320K 5 2857 195 81 232470
32 20 640K 5 2857 195 151 464940 -
38 1 62712 6 3054 236 18 30996
38 10 627120 6 3054 236 81 309960
38 20 1250K 6 3054 236 151 619920

To get some insight into these numbers we recast the above table using
20Kflops per second for t+ (CM2 model connection machine measured time
[14]), and 250 microseconds per message (CM2 model connection machine
message time [15]). Time in the table is expressed in milliseconds and is
rounded.

n m particles h communication translate, tO evaluation
millisec millisec

32 1 32K 5 714 - - 1150

32 10 320K 5 714 - - 11500
32 20 640K 5 714 - - 23250 P

38 1 62712 6 763.5 - - 1550
38 10 627120 6 763.5 - - 15500
38 20 1250K 6 763.5 - - 31000

The table illustrates several characteristics of this computation scheme;
330o~ J

I:

'.I

1. While the communication time is substantial, it does not increase with
N so long as the height of the tree is constant. Neither, in fact, do
any of the quantities associated with the "tree". These quantities are %
a function of the size of the tree, i.e., of n and h, but not the number
of particles. 1

2. With a low number of particles most of the time is communication
time.

3. Since the number of processors in the connection machine is fixed, to
reach a high number of particles m has to increase. This shifts the
computation load to the evaluation and to the bottom level (h level) of
processors. They do most of the work while the rest of the processors
are idle.

4. The evaluation time could be reduced significantly by increasing the
number of processors so that m remains 1. This cannot be done in the
connection machine that has a fixed number of processors.

7.2 The GR Algorithm - Comparative Speed

The section starts by summarizing results from previous sections.
messages: It is assumed that the GR algorithm uses np coefficients; each

coefficient is represented by a single precision 32bit word plus one 32bit word
for specifying the origin of the cell. Thus, the length of a message is 32np
bits. A message-time unit is the time for one such message; the exact time
on any particular hardware,say, the connection machine, depends on np.

Communication time: In 3D we have 8 children and 189 as the maxi-
mum size of an interactive set. Thus, the communication time is 16h + 26.72
(equation 24).

Computation time: To simplify the discussion it is assumed t+ = t.;
t/ = 5t+.0 Under these simplifying assumptions the time spent in computing
is:

1. -Ono:
n,(4m - 1)t+;

31

'I.
u'

2. Translate,:
3 kt+;

3. Convert,:
3c t+; i

4. Shift.:

4cpt+;

5. Evaluation: Potential:

3mnpt+;

Force:
6mnpt+.

Denote by nn the number of neighbors and by nchildren the number of
children. The total time is:

r(4no)+h.r(Translate,)+(nn).nchildren.r(Convert.)+h.r(Shift.)+r(Evaluation) =

(57)
(n(4m - 1) + 3hkp + 3 lnch, ,denCp + 4hc + 3mnp)t+ (58)

(np(7m - 1) + (3kp + 4cp)h + 3 nnchidre,,Cp)t+ (59)

For reference in the sequel it is convenient to denote

P = np(7m - 1)t+ (60)

which is the time spent in the leaves of the tree, and to denote

Q = ((3kp + 4cp)h + 3 lnfchidenCp)t+ (61)

which is the time spent in the tree nodes that are not leaves.
Cells and particles: Let the number of cells in the bottom level,h, be

N = n x n x n ; then h = [log 2 n]. The total number of cells is:

NO(+ 1 + 1 + 8 N (62)

8 64 7
Since the number of processors in the connection machine is 64K we

would like to restrict the number of cells to this number.

11,.

32

The total number of particles is inN.
Summary: The following table summarizes communication and compu-

tation times for selected values of n, m and p. The computation time is
stated in terms of t+. The communication time is stated in terms of message
units.

The time for Translate+ Convert+ Shift is denoted by Q. This time is
independent of m. In the table this time is separated from the time which
depends on m and which represents operations done by the bottom level
processes.

n m particles h p nP corn- Q §nO + evaluation
munication

message units t+ t+,
32 1 32K 5 1 4 1952 4571 24
32 1 32K 5 2 10 1952 15732 60
32 1 32K 5 3 20 1952 42685 120
32 10 320K 5 1 4 1952 4571 276
32 10 320K 5 2 10 1952 15732 690
32 10 320K 5 3 20 1952 42685 1380
32 20 640K 5 1 4 1952 4571 556
32 20 640K 5 2 10 1952 15732 1390
32 20 640K 5 3 20 1952 42685 2780
38 1 62712 6 1 4 1968 4620 24
38 1 62712 6 2 10 1968 15912 60
38 1 62712 6 3 20 1968 43188 120
38 10 627120 6 1 4 1968 4620 276
38 10 627120 6 2 10 1968 15912 690
38 10 627120 6 3 20 1968 43188 1380
38 20 1250K 6 1 4 1968 4620 556
38 20 1250K 6 2 10 1968 15912 1390
38 20 1250K 6 3 20 1968 43188 2780

The above table is translated below to "real" numbers: the communica-
tion time assumes a 190bit message and coefficients of 32bit; the computation
time assumes 20Kflops per second, typical of the CM2 model connection ma-
chine [14]. The communication time is assumed to be 250 microseconds per
message [15].

VOM 9.

P jq
1

U ~ ~ ,~(~ . .- *33

n m particles h p np corn- Q Ono + evaluation
munication 3(2h + 104)npp (9m + 7p - 4)n,

millisec millisec millisec
32 1 32K 5 1 4 488 228 1
32 1 32K 5 2 10 488*3 786 3
32 1 32K 5 3 20 488*6 2135 6
32 10 320K 5 1 4 488 228 14
32 10 320K 5 2 10 488*3 786 35
32 10 320K 5 3 20 488*6 2135 69
32 20 640K 5 1 4 488 228 28
32 20 640K 5 2 10 488*3 786 70
32 20 640K 5 3 20 488*6 2135 139
38 1 62712 6 1 4 492 231 1
38 1 62712 6 2 10 492*3 796 3
38 1 62712 6 3 20 492*6 2159 6
38 10 627120 6 1 4 492 231 14

38 10 627120 6 2 10 492*3 796 35
38 10 627120 6 3 20 492*6 2159 69
38 20 1250K 6 1 4 492 231 28
38 20 1250K 6 2 10 492*3 796 70
38 20 1250K 6 3 20 492*6 2159 139

This table illustrates several characteristics of this computation scheme:

1. As in the BH case, the communication time does not increase with M.
Neither do, in fact, any of the quantities associated with the "tree".
These quantities are a function of the size of the tree, i.e., n and h, but
not of the number of particles.

2. Unlike the BH case, most of the time is spent in the "body" of the tree
performing Convert - calculating the effect of the interactive set. The
evaluation stage is relatively fast.

3. The GR algorithm seems to be several times faster than the BH algo-
rithm for a large number of particles arranged as indicated below. It
requires less communication time and less computing time. For a small
number of particles (say, 32K particles) the GR algorithm with p = 1 is

34

faster then the BH algorithm. An accurate comparison requires com-
paring performance for the same global error. Such an analysis has not
as yet been done.

4. Unlike the BH algorithm, the GR algorithm utilizes all the processors
more or less equally. In considering the replacement of a connection
network by fewer, faster processors we can take advantage of the fact
that the bottom level is significantly busier than the rest of the com-
puting elements; using the GR algorithm all the processors have to be
accounted for and replaced (more on this subject in the sequel).

7.3 Mapping the "pyramid" into a hypercube

The mapping of the network of processes into an hypercube is preparation
for executing the algorithm on a connection-machine-like computer. The
interest here is twofold. How fast can a hypercube machine simulate the

UO network and how can the n-body computation be organized on the hypercube.
The definitions in this section follow [17]. The actual mapping is a rather
straightforward generalization of [181.

An embedding < 0,p > of a graph G = (VG, EG) into a graph H =
(VH, EH) is defined by an injective mapping from VG to VH, together with
a mapping p that maps (u,v) E EG onto a path p(O(u), O(v)) in H that
connects 0(u) and O(v).

The quality of an embedding is measured by three cost functions - ex-
pansion, dilation,and load factor. The expansion of an embedding < 0, p >
of G into H is the ratio of the size of VH to the size of VG. The dilation of
an edge (u, v) under < , p > is the length of the path p(4(u), O(v)) in H.
The dilation of an embedding < 4, p > is the maximum edge dilation, over
all edges in G, under < 4), p > . The load factor A(e) of an edge e in H is the
number of paths that pass through e which are images of edges in G. The
load factor of an embedding is defined to be the maximum load-factor over
all edges in H.

Consider the 2D case first. An n x n pyramid graph is formed from meshes
of size n x n, a x ,2 !1 x 1, ..., 1 x 1 connected as implied by figure
5. Note that n is a power of 2 and that if each node is one of our cells,
this pyramid does not contain the connection to the "diagonal" neighbors.

:35

AMOX

(Omission of the diagonal link does not change d in either the two or three
dimensional cases. As it is shown in the sequel, d is the important quantity
in our case.)

Figure 5: A 2 x 2 and a 4 x 4 pyramid

Lemma 7.1 An n x n pyramid can be embedded in a 2n 2 node hypercube so
that dilation of the embedding is 3 and the load-factor is 2.

See [18] for a proof.

Lemma 7.2 An n x n x n pyramid can be embedded in a 2n3 node hypercube
so that dilation of the embedding is 4 and the load-factor is 3.

The lemma can be proved similarly to the proof in [18].
Clearly, we are interested in a mapping that simulates the tree well. Since

each process is mapped to a different processor, the issue is an issue of com-
munication time rather then computation time. Maps differ from each other
in the amount of communication overhead they introduce as compared to
the tree. While there is no claim that the above mapping is optimal, it is

36

J J _.N ... _J .p 7.) -I~ '

b
ba

T

C d

Figure 6: A simple 2D embedding.

attractive since neighboring nodes remain close together. Moreover, we can
bound the number of cycles of the hypercube machine needed to simulate a
cycle of the pyramid machine.

[17] considers the case of simulating G by H where all nodes sends mes-
sages at the same time on all adjacent wires. The resulting bounds are
max{d, A} < T < dA where T is the number of cycles of H required to sim-
ulate any cycle of G. These bounds are too pessimistic for our case. In our
case an upper bound is simply the dilation d. This is indeed not the bound
on a general computation performed on a pyramid network but a bound on
our own algorithm with the above mapping. The bound results from the fact
that in this mapping the only overlapping paths are those from a node to
its children. Since only one child at a time sends messages to its parent, no
conflict arises. Since in most part of the algorithms the information consists
of several messages that can be queued inside a process, it is believed that d
is actually a conservative upper bound.

The conclusion is that hypercube communication can be bounded by d
multiplied by the communication performance of the pyramid. We believe
that this is a rather conservative estimation of performance; with the pyramid
mapped as above the average performance of the connection machine will be
very close to that of the pyramid machine.

The expansion story is less attractive. A 32 x 32 x 32 base (32K cells in

:37

Figure 7: A simple 3D embedding.

the bottom level) requires 64K processors, of them not participating in
the computation.

7.4 A Small Number of Larger Processors

This section considers the implementation of the algorithm by a small num-
ber of larger processors. Both "small number" and "larger" are with respect
to the connection machine. We consider either 1 processor, or , for 3D arrays
of 2 x 2 x 2, 4 x 4 x 4, etc. of processors. What we have in mind for a
processor is a board with fast arithmetic chips, memory and a controller.
Currently, a board like this can deliver about 20M floating point operations
per second and has a memory of several million words of 32 bits each. The in-
terconnection among neighboring processors is via 32-bit buses. To facilitate
simple programming and symmetric information transfer between processors
the buses are interconnected as illustrated by figure 8. The processors are
associated with grid points. Each processor has an input bus and an output
bus. The input bus of a processor is connected (via tri-state gates) to the
output buses of all its neighbors. The output bus of a processor is connected
(via tri-state gates) to the input buses of all its neighbors.

38

Po P

. O Figure 8: Interconnection among neighboring processors.

The pyramid of processes has to be partitioned and assigned to individual '
c sIt is assumed that this partition is symmetric; The base of the

pyramid is equally divided among the processors, each getting a smaller "
pyramid; whatever is left is divided again, or assigned to one processor. For
example, a 32 x 32 base pyramid of processors is divided among 4 processors; -
Each gets a 16 x 16 base pyramid; the top process remains and has to be
assigned to one of the processors. 5

There are several differences between this computation mode and the ones
discussed before. First, no messages have to be sent between two processes
that resides on the same processors (local processes). (A process accesses the

results of another process directly.) Thus, in this case, the communication
time is negligible. Second, a processor evaluates its processes sequentially;

, parallelism exists between processors only. Thus, the evaluation order has to
be such that no processor will be waiting for data from another processor. '

~The transfer of information between processors is different. It is assumed

that each processor has a DMA channel so that data transfer to and from "
buses can be done simultaneously with computing. In the pyramid case, to
save "wires", information was routed to interactive set members through par-

V'

..-. "" "9

-' ' .'* ,' ". ' '* '. ," , ' - , - , . ", % ,, .Y,
7

,Y, ... -e - . oo.,",e e . ,e.- . .,

ents. Clearly, this does not make any sense for local processes; for processes
in different processors the issue is how not to send the same information more
than is necessary. Therefore, when a cell has a result which is needed by a
cell in another processor, the result is sent over; the other processor has a
memory cell for each cell on other processor that is in one of its own cells
interactive sets. The arriving information is stored there to be used by all
cells that need it.

Let us consider a pyramid of processes with a base of n x n x n (e.g.,
n = 32) and an array (of larger processors) of size k x k x k, where k = 2, 4, 8,
etc.

The pyramid of processes is partitioned among the array's processors so
that each processor gets a pyramid of base B x 2 x M. The top of the original
pyramid is not covered; In the case of base 32 pyramid, which is used here
for comparison, and arrays of base 2, 4, and 8, the top is a pyramid with
base I x 1 x 1, 2 x 2 x 2, and 4 x 4 x 4, respectively. It is assumed that this
tip is either assigned to one of the processors or divide among them. For the
cases k = 2,4,8 the contribution of the tip pyramid to the total time can be .FJ%,
ignored and this is what is done in the sequel.

It is assumed that the systems of processors uses the same algorithm
as in section 4, except that each processor services all processes in its own
pyramid. The processors work in parallel and in synchronization so that no
processor has to wait for the results of its fellow processors.

It is not difficult to see that each processor implements somewhat less
than ()3 processes. Similarly, a processor has to implement the communi-
cation between the processes; the time for communication between processors
residing on the same processor can be ignored. The communication time be-
tween processors has to be accounted for. This communication is represented
by "wires" to from processes on the pyramid faces to neighboring processes
which reside on neighboring processors. In 3D the number of these wires is
proportional to (2)2 and the sequel considers their effect on the communica-
tion time.

The calculation of the time computation is based on 20M floating point
operations per seconds and the communication time is based on transfer time
of 80 nanoseconds per 32 bits.

Communication time: It is assumed that each processor has pseudo-
cells , or p-cells, one p-cell for each cell z, such that z is a member of an

40

interactive set of a cell in the processor's pyramid, z not in the pyramid.
The number of such cells can be calculated. For a cell y, y a cell on the
pyramid face, these are the children(neighbors(parent(y))) which are not in
the pyramid. (Note that parent(y) is in the pyramid and that we are inter-
ested in neighbors(parent(y)) which are not in the pyramid.) If we "cover"
the pyramid faces with such cells, this cover includes all the interactive set
members of cells in the pyramid where the members are not in the pyramid.
The number of cells in this cover is:

n n n

(number of children)x(number of cells in the faces of a y- x ×y-x- pyramid)
2k 2k 2k

(63)
The number of cells in a face of a n x n x n pyramid is

n 2(1 + 1- + 1 < ... n 2 (64)
1- 6

Thus, the number of cells in the above cover becomes

i(-'x 6 + 8lo -) (65)

The last term are cells that cover the corners. This last term can be just

ignored.
Thus, the number of p-cells is about 16(1)2 and this is the number of

messages the processor has to send or to receive (ignoring the fact that some
processors do not have neighbors on all directions).

The GR algorithm defines the content of such a cell by np + 3 coefficients
(the 3 represents the coordinates of the source). Thus, the communication
time is

n 2 80 x 10-9
(np + 3) x 32 x 16() (32 (66)

Similarly, the BH algorithm defines the content of such a cell by 1 +
3 coefficients (the 3 represents the coordinates of the source). Thus, the
communication time is

3 2(80 x 10- 9 (
4x32x16(.)(32 (67)

Computation time: A processor that implement a I x x ! base
pyramid has to perform all the operations that its processes do.

41

-. .- d U ~It

.A

For the 3D GR algorithm the computation time is:

(n)3, 8 8 8%
(-)(r(,Ono)+ Tr(Translate.)+ Tnee(Convert)+7,r(Shift)+ , ' (Evaluation))

(68)

Using equations (39), (43), (46), (49) and (50), the expression becomes (68

n(),3n,4m3- 1) + 3kp + 3n,,tc, + 3mn,)t+ (69)

which results in

(n)3(n(7m- 1) + 8(3k, + (3neet +4)cp))t+. (70)

The computation time of the 3D BH algorithm almost entirely consists
of the evaluation time. Thus, for a 2 x 2 x I base pyramid the computation
time is

n z1 .a,.

(n)3(evaluation time for one processor of the pyramid) j.

GR algorithm summary: The following table summarizes the compu-
tation and communication time for the GR algorithm and for various values
of n, p and k.

n m particles p ni, kp c k=2 k=4 k=S
comm- comp- comm- comp- comm- comp-
time time time time time time S

sec sec sec
32 20 640K 1 4 7 7 2.3 1.05 0.57 0.132 0.15 0.016 .
32 20 640K 2 10 28 25 4.27 3.6 1.07 0.46 0.27 0.057
32 20 640K 3 20 84 65 7.53 9.3 1.87 1.16 0.47 0.146
38 20 1250K 1 4 7 7 3.25 1.76 0.8 0.22 0.21 0.027 S

38 20 1250K 2 10 28 25 6.0 6.1 1.51 0.764 0.37 0.095
38 20 1250K 3 20 84 65 10.6 15.6 2.63 1.95 0.67 0.244

The above numerical results can be compared with the the performance of
the GR algorithm on the pyramid (section 7.2). The following table compares
the performance for p = 3. Define Ratio

def (total time pyramid)
Rati= (total time k x k x k array) (73)

42,42 a .

n m particles p Ratio Ratio Ratio
k=2 k=4 k=8

32 20 640K 3 0.32 1.75 8.61
38 20 1250K 3 0.20 1.16 5.23

BH algorithm summary: The following table summarizes the compu-
tation and communication time for the BH algorithm.

n m particles k=2 k=4 k=8
comm- comp- comm- comp- comm- comp-

ttime ime time time time time
sec sec sec

32 20 640K 1.3 126.4 0.33 16.0 0.08 2.0
38 20 1250K 1.84 179.2 0.46 22.4 0.11 2.4

The above numerical results can be compared with the the performance
of the BH algorithm on the pyramid (section 7.1).

n m particles Ratio Ratio Ratio
k=2 k=4 k=8

32 20 640K 0.15 1.21 9.8
38 20 1250K 0.14 1.25 9.12

Summary: It follows from the previous section that

computation time pyramid + communication time pyramid <

total time hypercube < (74)

computation time pyramid + d x (communication time pyramid).

where d = 4. Bounds for the ratio of the total time, hypercube, to the total
time, array, can be derived from this relation. Since I believe that d = 4
is a rather conservative bound, I am giving the hypercube the benefit of
the doubt and, for comparison sake, consider its performance equal to the
pyramid.

The above numerical results indicates that the array can comfortably
compete with either the pyramid or the hypercube (both with the CM2
connection machine parameters). A general comparison of the array and
the hypercube has to weight two additional factors: First, the hypercube,

43

- - '

in the form of the connection machine, is an existing commercially available
equipment; the array, has to be built. Second, the smaller arrays, e.g. 2 x 2 x 2,
can be expected to be relatively inexpensive, probably more then a order of
magnitude less expensive than the connection machine.

4

44 *5 .

I' -1 S~-:-

8 Near-field Computation

This section estimates the computation and communication time required
for near-field computation. These estimates are added to the estimates of
the far-field computation to yield an estimate for the total time required.

Let q be a point mass at some cell n. The near-field force on q is the force
exerted on q by particles in n an in neighbors(n). This force is computed
using

FMM = G()- y i - (7'

where M_. and M. are the two mass points in 3D whose coordinates are
X = (Xl,X2,X 3) and y = (y1,Y2,y3), respectively, and F,, is the force on M,
in the xi direction. This calculation is rather straight forward and the only
issue is how to take advantage of the symmetry of the force (F, = -F,,)
which, in parallel computation, requires some elaboration.

Consider the pyramid computational structure. Only the bottom layerC. processes participate in the near-field computation. The following is a step
by step description of this computation.

9 For all cells c in the bottom layer evaluate the forces on each mass in
c due to the other mass points in c.

The evaluation of equation 75 for all force components requires 2t+ +
.6t- +23t. +tl = 36t+. There are lrm(m - 1) such computations; Under

the assumptions stated in section 6 the total time is llm(m - 1)t+.

* Consider a cell c and its neighbors. c and each of its neighbors, say e,
determine a direction. This direction is determined by x. - xc where
Xe is the center of the neighbor cell and x, is the center of c. Clearly,
if x, - x, is a direction, so is xc - xe. Let D be a set of directions such
that if d is a direction the either d E D or -d E D but not both.

For all directions d in D do

Each bottom layer cell c sends the value and coordinates of each
of its mass points to its neighbor in the d direction.,p

Communication time is tn message unites.

45

- Each cell c provides 3m locations for the forces on the mass points
whose values and coordinates it just received. Next it calculates
the forces between any two pairs of mass points, one in c and one
that its values just arrived from the neighbor.
Computation time is 36m(m - 1)t+

- The values accumulated in the 3m locations are sent back to the
neighbor cell from which the mass points came.

Communication time is m message units.

Since the number of directions in D is 2& the total time is
2

(L6(m - 1)t+ + 2(36m(m - 1)t+ + 2mtrntsg unt) (76)

Since the communication time is small as compared to the computation
time we (almost) get the 1/2 factor discussed in the beginning of this section.
This is achieved by having one processor calculate the force and send the
results back to its neighbor.

Using the CM2 connection machine parameters once again (20k floating
point operations per second, 250 microseconds per message) the time for
evaluating the near-field by the pyramid is given below (nn is 26 for 3D).

m communication time computation time
nnm 36(2a + 1)m(m - 1)t+
msec msec

10 65 2,268
20 130 9,576

The array of larger processors is faring just as well in the near-field com-
putation. As seen from the above, communication time is negligible. Since
only the bottom layer processors of the pyramid participate in the calculation
we get for an n x n x n base pyramid

pyramid time 1

k x k x k processor array time (()377)

where
speedup = t+ for a pyramid processor (78)t+ for a larger processor

46

The speed up is 1000 for the values used in section 7.4. Thus, the value of
pyramid time tefi i al o auso

kxkxk procssor array time isgiven in th oig talo arious vle fk
k n=32 n=38
2 0.25 0.146 I

4 2 1.17
8 16 9.33

47.

M'RI

a

47'

9 Summary and Conclusions

The work formulates the N-body problem as a set of recursive equations
with boundary conditions. The numerical solution to this set of equations
can be viewed as a pyramid structure of processes. There are three kinds of
processes: the bottom level processes, the top level processes and all the rest.
All processors are implemented by means of five functions: 40, Translate-,
Convert., Shift,, Evaluate. Both the BH and the GR algorithms have
the same structure. They differ from each other in the above functions.
This formulation of the N-body problem simplifies the understanding of the
algorithms, their analysis and programming.

The pyramid structure is mapped into three different architectures that
can be viewed as possible hardware implementations. For each mapping the
amount of time for arithmetic computations and the time for communication
between processors is estimated. Out of these estimates several qualitative
conclusions are derived:

Parallel execution reduces both the BH and the GR algorithms to 0(log N),
where N is the number of particles; this bound covers both computation and
communication time. This is somewhat of a surprise, because in the serial
computation the BH algorithm is considered a O(N log N) algorithm while
the GR one is O(N).

The algorithms exhibit both common and differing patterns of behavior.
In both cases, given the the height of the tree h, the time spent in the tree
is independent of m, the number of particles in a cell. The evaluation stage,
however, is hard on BH; for large r most of the time is spent in it, and
computation time far exceeds communication time. For large m the GR
algorithm performs exceedingly well; the evaluation of the potential function
for each particle is straightforward. Clearly, using a 38 x 38 x 38 pyramid,
the GR algorithm can handle 10M equally distributed particles almost as
fast as it handles 1M. At these numbers, the increase of m from 20 to 200
increases the total time by about 25 percent only because the algorithm is
bounded by the communication time rather than by the evaluation time at
the bottom cell.

Since the BH algorithm is much simpler to program it is worthwhile noting
that its performance for 62K particles, one at a cell, is about equal to that
of the GR algorithm when p - 2, using the same number of particles. A

i

48

.....

complete comparison of BH and GR requires comparing the algorithms for
the same global error. This work has not been completed as yet.

A hypercube machine can simulate the pyramid structure without conflict
of messages and with a slowdown equal to or less than d = 4.

Using the GR algorithm with p = 3 and a connection machine of the
present size, it is possible to calculate a solution to the IM particle (static)
many body problem in about 24 seconds. This number is based on multiply-
ing d = 4 by the communication time computed for the tree and adding the
computation times for the far- field and for the near-field. It is considered a
rather conservative estimate. This number is also the estimate for one time
step for the dynamic many body problem.

For running the N-body algorithm the connection machine has a clear
advantage: it is an existing product that can be readily used. The analysis,
however, points out some possible disadvantages; while 64K processors seem
quite a large number, the 3D N-body problem reaches the limit rather fast.
One has to increase m , assigning more particles per cell. Clearly, at least for
the BH case, we would rather increase the number of processors; a feature
the hardware does not support.

Rough performance estimates for an array of faster processors indicate
that with a modest size array it is possible to get performance competitive
to that of the connection machine.

The above calculations considered particles that are equally distributed
in space. Often, physical system exhibit sparsity, certain regions of space
have many particles while others are empty or nearly so. Taking advantage
of sparsity awaits farther work.

The computation and the communication times computed should be con-
sidered initial estimates as data moving operations were not taken into ac-
count. Moreover, these estimates await experimental verification, preferably
by programs simulating the above processes. This work is currently under-
way.

Acknowledgment

Thanks are due to Gerald J. Sussman for introducing me to astrouomy,
Alexandre J. Chorin for bringing the work of Greengard and Rokhlin to
my attention and for commenting on the manuscript, Harold Abelson and

49

Feng Zhao for detailed comments and discussions, Joshua Barnes, Andrew
A. Berlin, J. Makino, and Piet Hut for discussions, and Charles E. Leiserson
for pointers to the graph work,

This report describes research done in the Artificial Intelligence Labo-
ratory of the Massachussetta Institute of Technology. Support for the Lab-
oratory's artificial intelligence reseach is provided in part by the Advanced
Research Project Agency of the Department of Defence under Office of Naval
Research contract N00014-86-K-O180.

50d

.

Ip
.4:;

'N.

References

[1] R. W. Hockney and J.W.Eastwood, Computer Simulation wing Parti-
cles. McGraw Hill, New York, 1981.

[21 A. J. Chorin, private communication.

[3] A. J. Chorin, Numerical Studies of Slightly Viscous Fow, J. Fluid Mech.,
Vol 57,785-796, 1973.

[4] C. Anderson and Claude Greengard, On Vortex methods, SIAM J. Nuer.
Anal., Vol. 22, N03, June 1985, pp 491-440.

[5] A. Appel, An efficient program for many-body simulation. SIAM. J. Sci.
Stat. Comput., 6(1), Jan. 1985.

(6] J. Barnes and Piet Hut, A Hierarchical O(N log N) Force Calculation
Algorithm. Technical Report, The Institute for Advanced Study, Prince-
ton, NJ 08540, 1986.

[7] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simula-
tions. Research Report YALEU/DCS/RR-495, Yale University, April
1986.

[81 J. Carrier, L. Greengard, and V. Rokhlin, A Fast Adaptive Multipole
Algorithm for Particle Simulations. Research Report YALEU/DCS/RR-
496, Yale University, January 1987.

[9] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Sys-
ternm. PhD thesis, Yale University, April 1987.

[10] L. Greengard and V. Rokhlin, The Rapid Evaluation of Potential Fields
in Three Dimensions. Research Report YALEU/DCS/RR-518, Yale
University, January 1987.

[11] F. Zhao, An O(N) algorithm for three-dimensional N-body simulations.
Master's thesis , MIT, Dept. of Electrical Engineering and Computer
Science, Oct. 1987.

(121 D. Hillis, The Connection Machine. MIT Press, 1985.

or , , 51

P

[131 D. Hillis and G. Steele Jr., Data parallel algorithms. Comm. of the ACM,
29:1170-1183, 1986.

[141 J. Makino, Unpublished report, School Of Advanced Study, Princeton,
NJ, 1987.

[15] Brewster Kahle, Private communication.

[16] Bit Bipolar Integrated Technology, Inc. Designing a Micro-Sequenced I
CPU with the B3110/B3120, AN-i, August 1987.

[17] S. Bhatt, F. Chung, T Leighton, and A. Rosenberg, Optimal Simulation
of Tree Machines, 27th IEEE Conf on Found. of CS. Oct 1986, pp 274-
282.

[18] T. Leighton, 18.435 course handouts, MIT, November 1987.

[19] Macsyma Reference Manual, version 12 Symbolics, Inc. 1986.

5ft

